

Lecture 6

Human Action Recognition

Abid Ali Mohammed Guermal

Deep Learning for Computer Vision

GUERMAL Mohammed 3 year PhD student: Human activity recognition for human-robot interraction Supervisor: BREMOND Francois Publications : https://arxiv.org/abs/2204.09468

ALI Abid (abid.ali@inria.fr) 3 year PhD student: Act4Autism: Action detection for diagnosis of Autism in Children Supervisors: BREMOND Francois, Thummler Susanne Publications : <u>Abid Ali - Google Scholar</u>

Outline

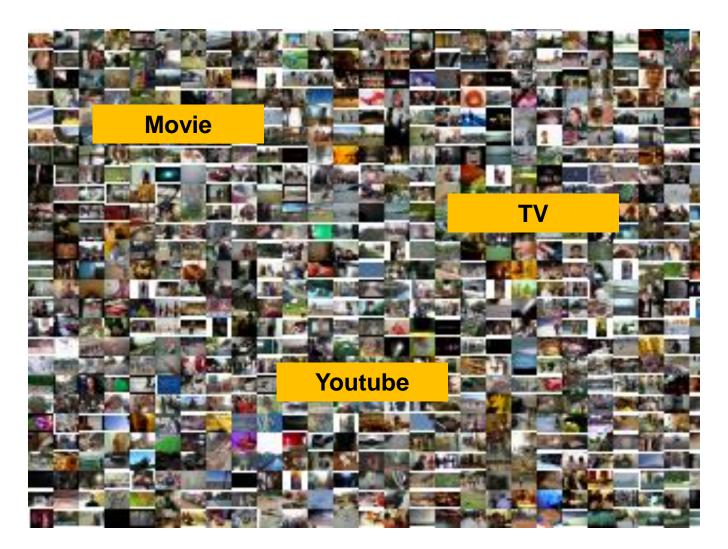
- Introduction
- Different Modalities
 - RGB
 - Optical Flow
 - 3D Poses
- Deep Networks for Action Recognition
 - Two-stream network
 - LRCN
 - 3D ConvNets (I3D)

Section 1

Introduction

Video analysis

Large amount of videos are accessible



Why human actions?

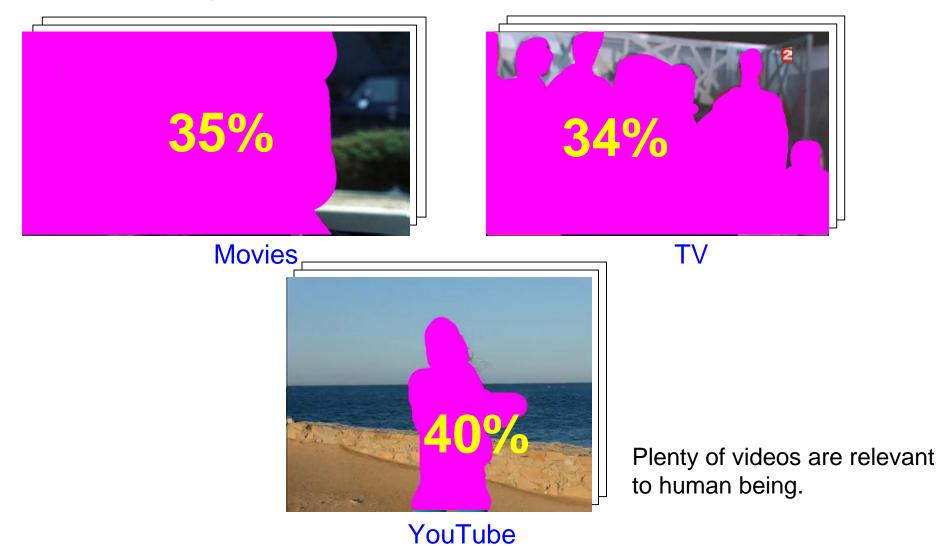
How many person-pixels are in the video?

ΤV

YouTube Human Action Recognition

Why human actions?

How many person-pixels are in the video?



Human Action Recognition

Data source

User videos/Media

Monitoring cameras

Robotics/ wearable cameras

~300 hours /minute

Streaming videos 24/7

Streaming videos to be analyzed in real-time

- Recommendation systems
- Advertising

- Surveillance system
- Patient/elderly monitoring
- Life logging
- Robot operations and actions

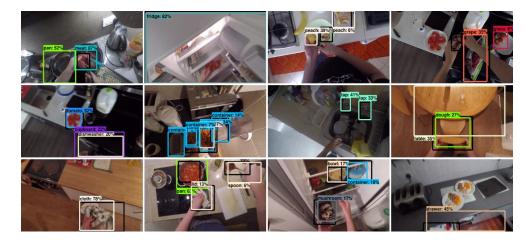
Categories of Action Recognition Data

Sports

Instruction videos

Cooking

Ego-centric



Categories of Action Recognition Data



• What does action recognition involve?

• Object Detection: Are they Human?

• Action Recognition: What are they doing?



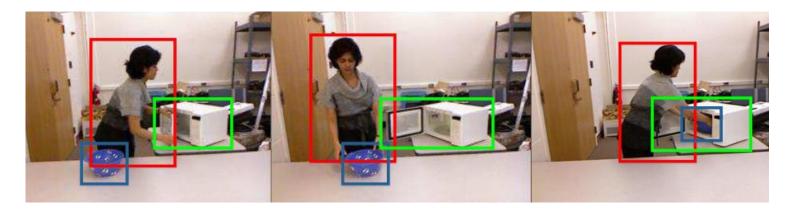
• Full semantic understanding

Action Recognition

 Classification of Videos into Pre-defined Action Categories

Complexity of Structure

 Different levels of structure complexity (temporal/spatial)

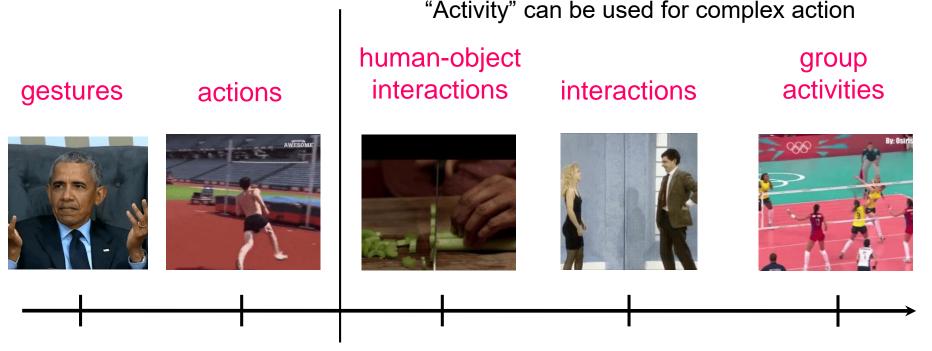


Complexity of structure in human actions

Semantic levels of human actions

There are levels of actions

• The ultimate goal is to make computers recognize all of them reliably.



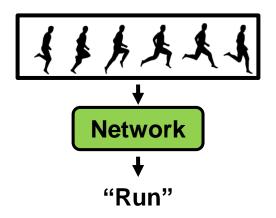
Levels of human actions

Action Recognition

A video classification task

Input: A clipped video (a sequence of frames)

Output: An action label



Actions of Daily Living (ADL)

 Actions of our boring everyday life: getting up, getting dressed, putting groceries in fridge, cutting vegetables and so on.

Challenges

- Subtle motion
- High intra-class variance
- Low inter-class variance

Typing a keyboard

Reading

• Same background

• Actions with subtle motion

High intra-class variation

Drinking

Drinking

Same background

• High intra-class variation

Low inter-class variation

Wearing shoes

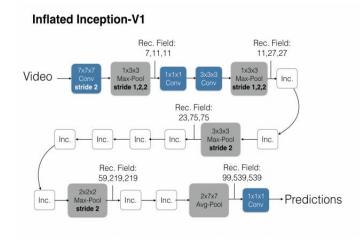
Take off shoes

Same background
 Actions with similar appearance

How to tackle these challenges?

• Different modalities

• Powerful Network to model the "time"



Section 2

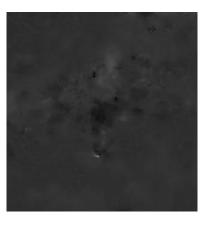
Modalities

Modalities

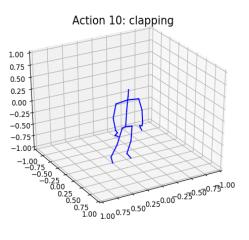
- Different input modalities
- Other: Audio, Depth image...

Clapping

RGB



Optical flow

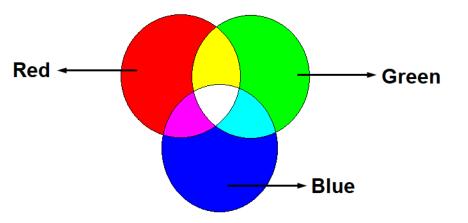


3D poses

RGB

• Tensor: $[H \times W \times 3] \times T$

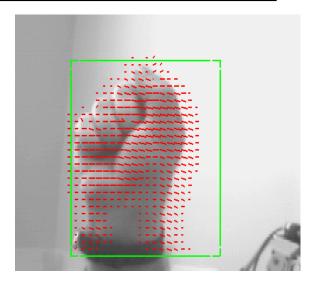
W



Optical flow

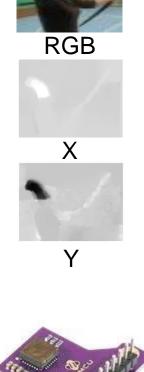
• Computes the displacement of each pixel compared to the previous frame. (How much does the pixel move?)

 Represented by two displacement vectors (one along x, another along y).



Optical flow

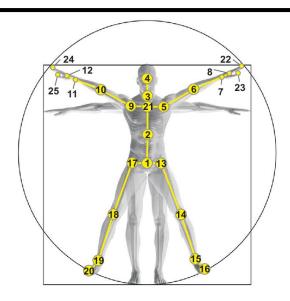
- Speed info
 Tensor: [H × W × 2] × T
- Channel is 2D Axes
 - 1st (X image: [h,w,0]): Left, right
 - 2nd (Y image: [h,w,1]): Up, down
 - X and Y are Grey images
- Acquisition
 - Flow camera (Unmanned aerial vehicle)
 - Flow estimation algo (TVF1, FlowNet...)

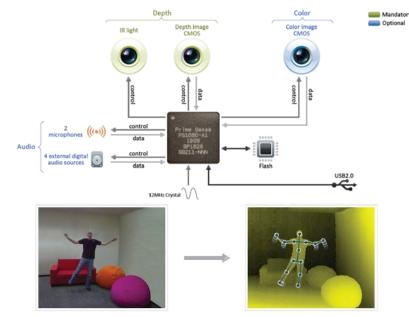


3D Poses/Skeletons

- Location info
- 3D Coordinates of N key joints on Human body
 Tensor: [N × (x, y, z)] × T

- Kinect camera (IR enhanced)
- Pose estimation algorithm (From RGB images)

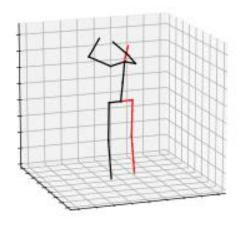




3D Poses

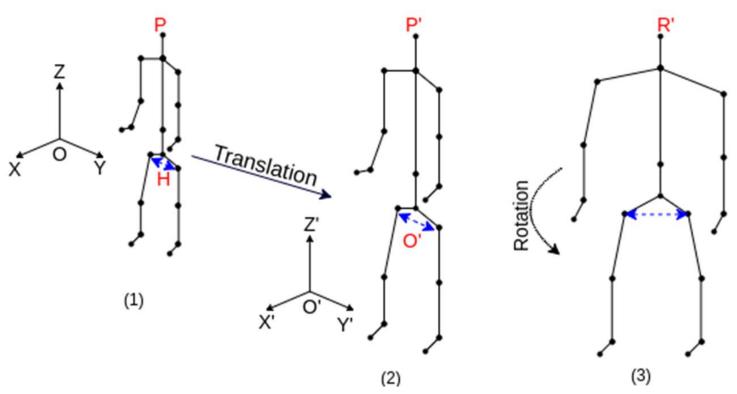
• Pose estimation from RGB (LCRNet+V3D)

Reconstruction



3D Poses

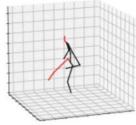
Preprocessing (optional)

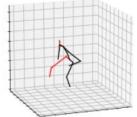


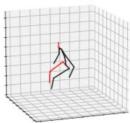
- Camera-body translation
- Rotation of bones w.r.t. a line parallel to the hip
- Normalizing the bones

Why?

• Provide complementary information.







Sit down

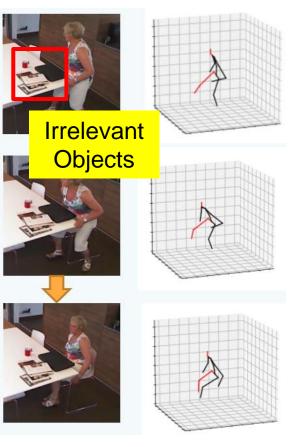
Wear glasses

Take off glasses

Human Action Recognition

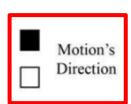
Why?

• Provide complementary information.



Sit down

Wear glasses



Take off glasses

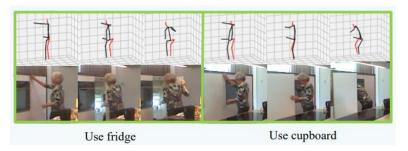
Optical flow

Human Action Recognition

Drawbacks

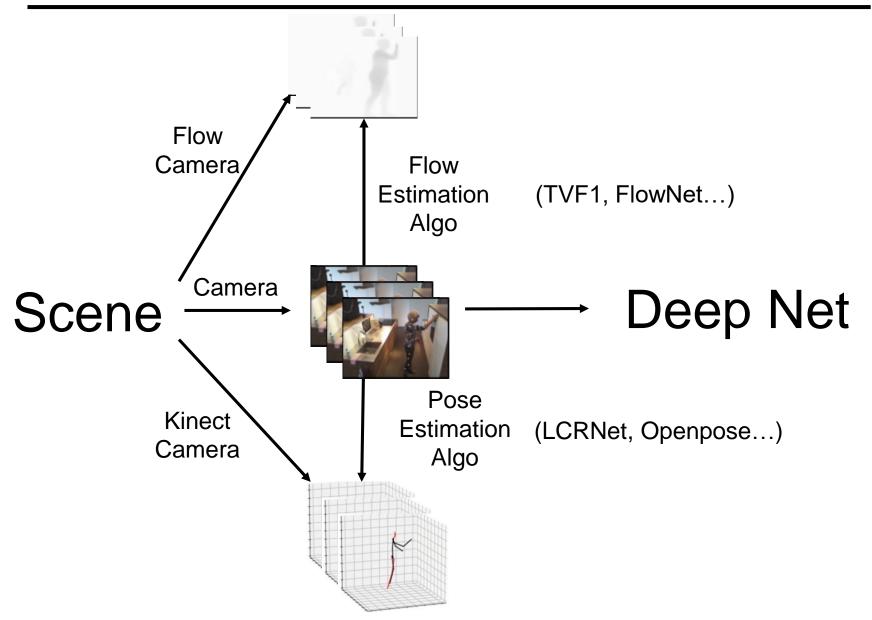
- Optical Flow
 - Time consuming in extracting Flow from RGB
 - Environment information is missing

- 3D Poses
 - Object Information is missing



- RGB
 - Contains the most information, but noisy!

Pipeline

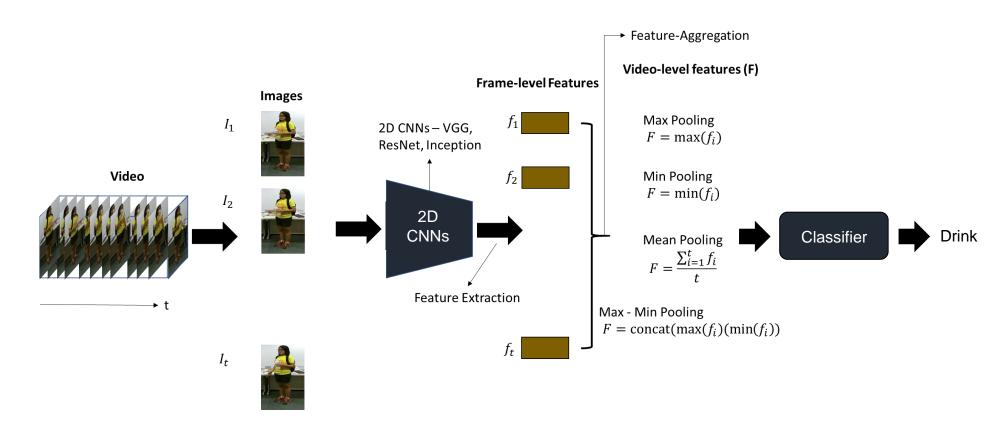


Section 3

Deep Networks for Action Recognition

Video Classification

Recap...



Temporal modeling is important!

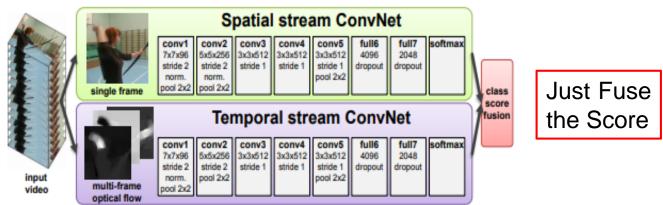
A still from '**Quo Vadis**' (1951). Where is this going? Are these actors about to kiss each other, or have they just done so?

Modeling temporal information is needed!

Two-stream Network [NIPS'14]

- Using multiple modalities as input!
- **RGB**: One image randomly sampled from the video. (Spatial: encodes object/appearance information)
- Flow: 2L optical flow images from a video. (<u>Temporal</u>: encodes short-term motion)

224 × 224 × 3

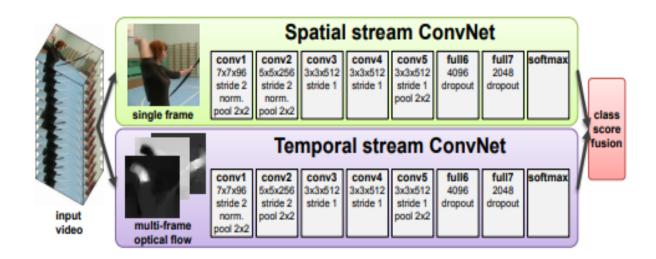


224 × 224 × 2L

Two-stream Network [NIPS'14]

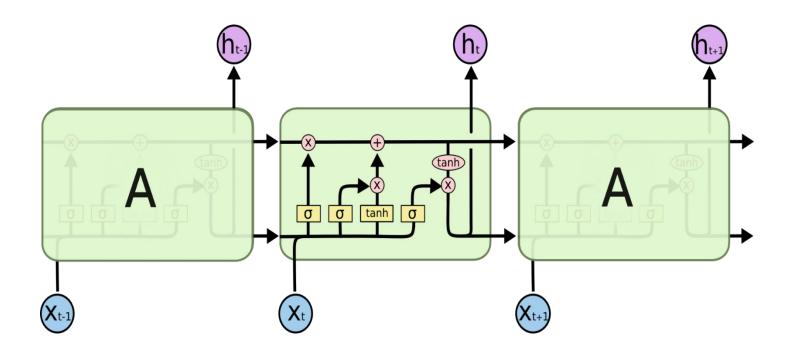
Drawbacks:

- Temporal information is not encoded.
- Long-term motion is ignored!



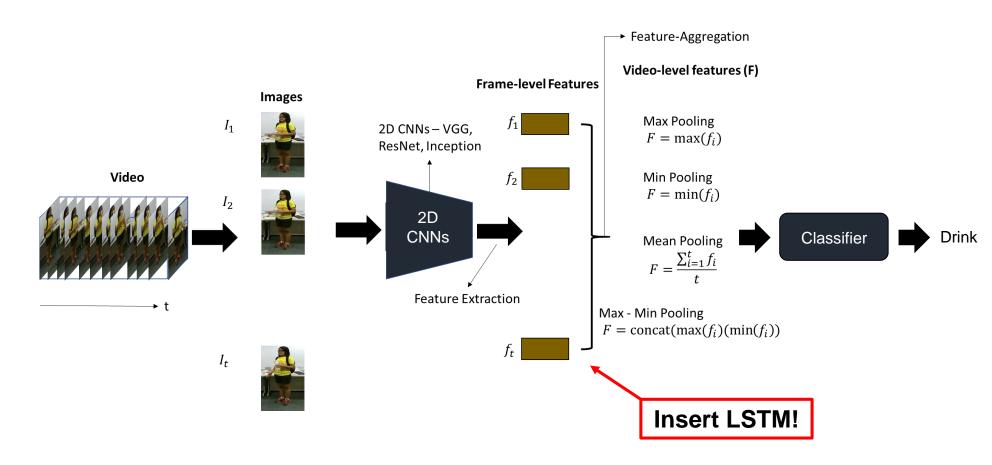
RNN (LSTM)

Recap ...



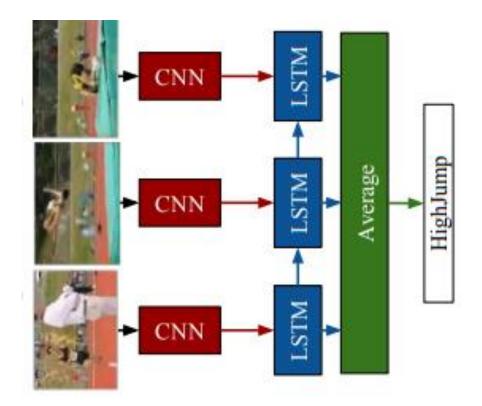
Video Classification

Recap...

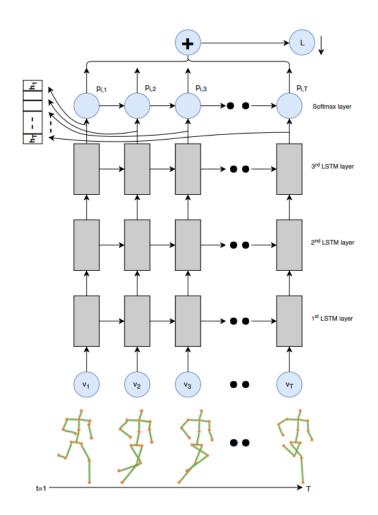


LRCN (2DCNN+RNN)

Sequence of images as input



Pose + LSTM



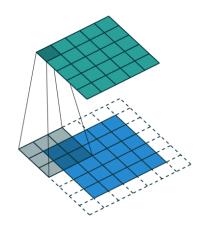
Drawback of RNN

- RNNs/LSTMs can only capture strong temporal evolution of the image level features.
- Vanishing gradient issue (Can not remember long term temporal information.)
- Not much efficient on small datasets (pretraining is not a good idea as they change the statistics learned by the gates).

2D Convolution (XY)

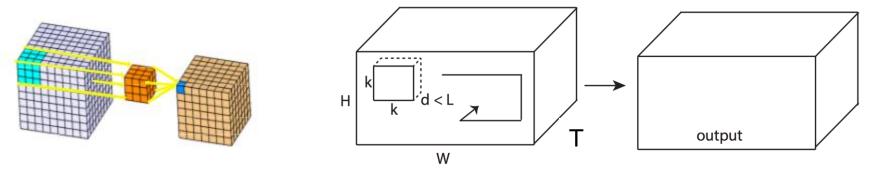
Recap...

Input: $[H_{in}, W_{in}, C]$ Output: $[H_{out}, W_{out}, #Kernel]$ Kernel move in H,W direction



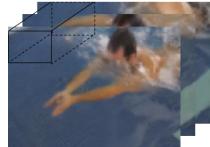
$$egin{aligned} H_{out} &= rac{H_{in}+2 imes padding-dilation imes (kernel_size-1)-1}{stride} + 1 \ W_{out} &= rac{W_{in}+2 imes padding-dilation imes (kernel_size-1)-1}{stride} + 1 \end{aligned}$$

3D Convolution (XYT)



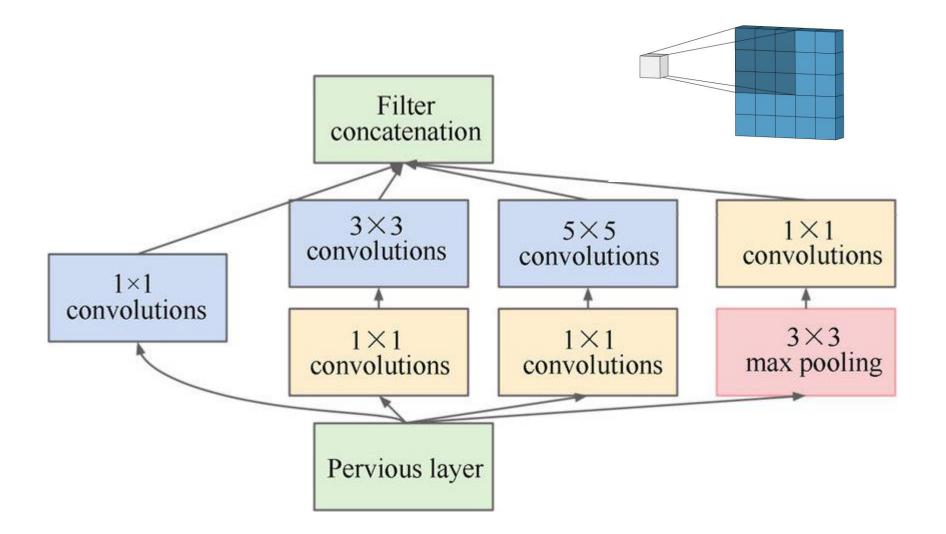
Input:
$$[H_{in}, W_{in}, T_{in}, C]$$

Output: $[H_{out}, W_{out}, T_{out}, #Kernel]$

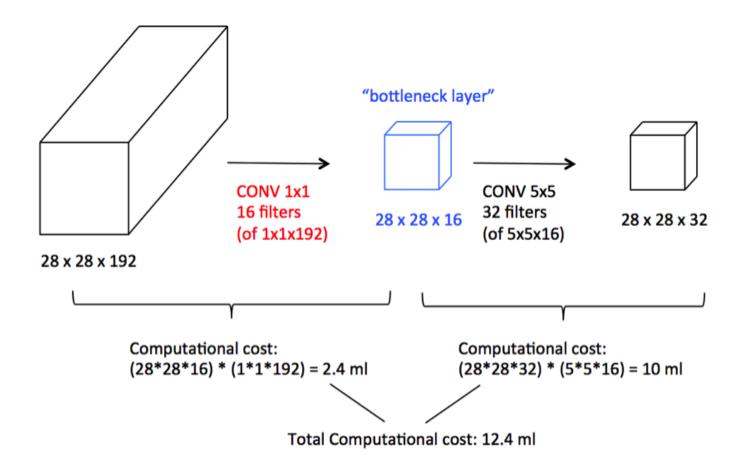


$$egin{aligned} H_{out} &= rac{H_{in}+2 imes padding-dilation imes (kernel_size-1)-1}{stride}+1 \ W_{out} &= rac{W_{in}+2 imes padding-dilation imes (kernel_size-1)-1}{stride}+1 \ T_{out} &= rac{T_{in}+2 imes padding-dilation imes (kernel_size-1)-1}{stride}+1 \end{aligned}$$

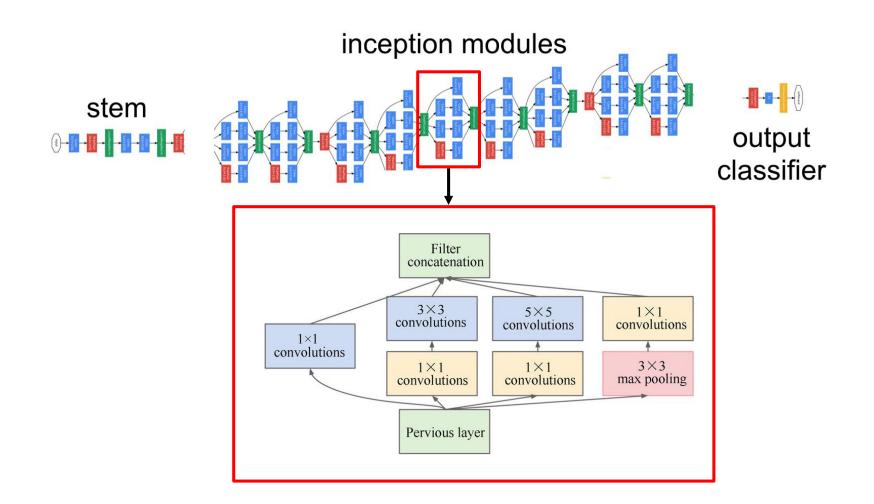
Inception Module



Bottleneck layer

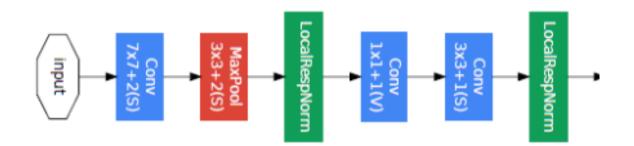


GoogleNet



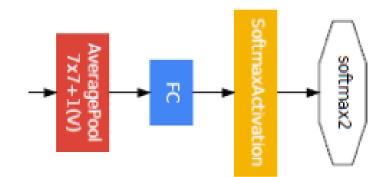
Stem

Stem has some preliminary convolutions.



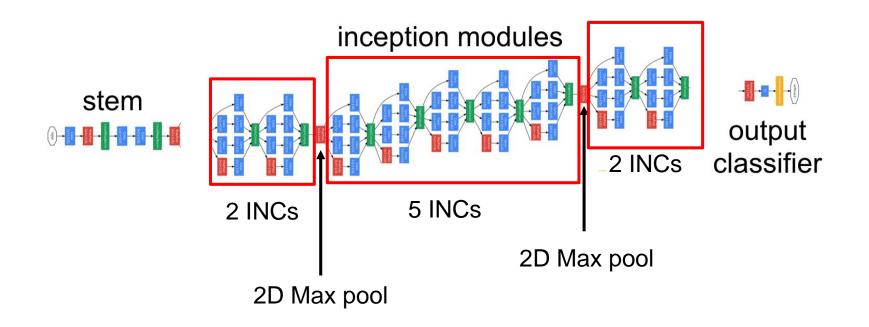
Classifier

- Project the channel size into the #classes
- Softmax Activation

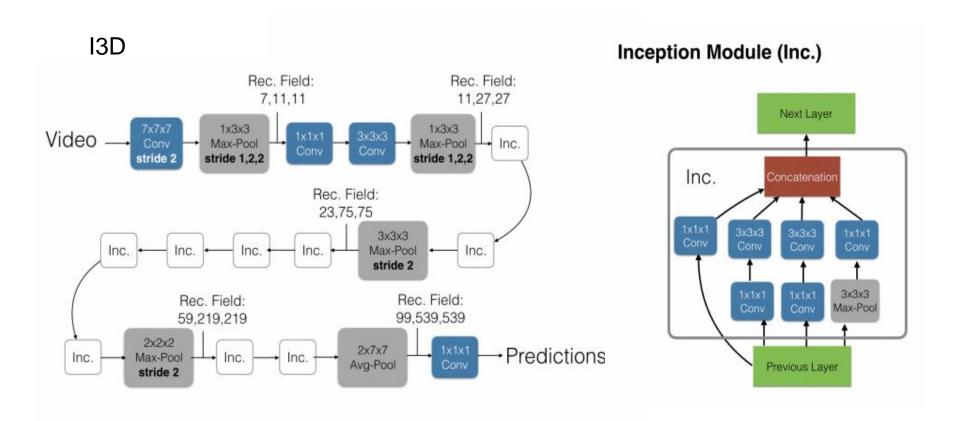


Inception Module (GoogleNet)

Recep...

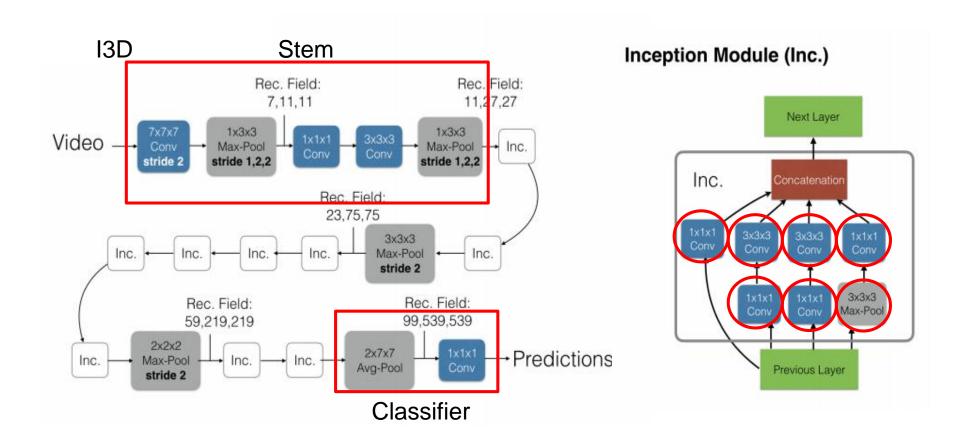


I3D Network [CVPR'17]



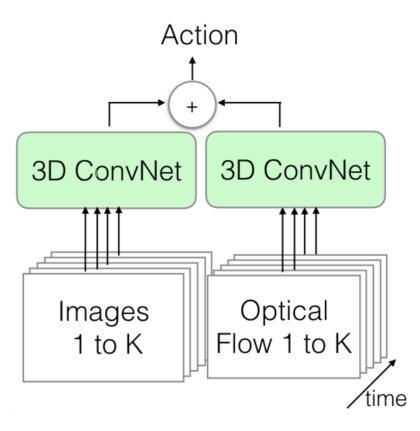
Same structure as GoogleNet!

I3D Network [CVPR'17]



Two-stream structure

Inputs RGB Stream: $224 \times 224 \times T \times 3$ Flow Stream: $224 \times 224 \times T \times 2$

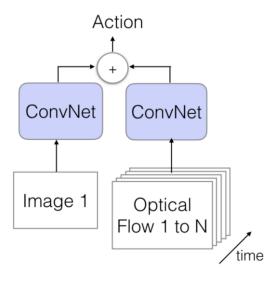


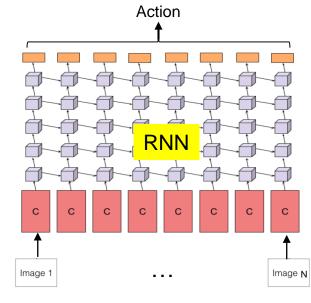
Limitation of 3D CNN

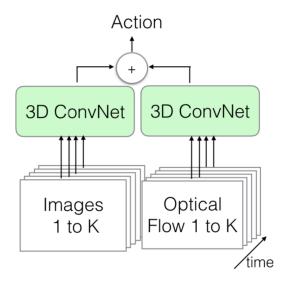
- Rigid Spatio-temporal kernels limiting them to capture subtle motion
- No specific operations to help disambiguate similarity in actions.
- 3D (XYT) CNNs are not view-adaptive.
- Large computational cost.

Summary

Input: A clipped video, Output: A class label







• Two-stream CNNs

1 frame **RGB** + 10 frames of **optical flow**

[Karen and Zisserman, 2014]

• Sequential models RNNs

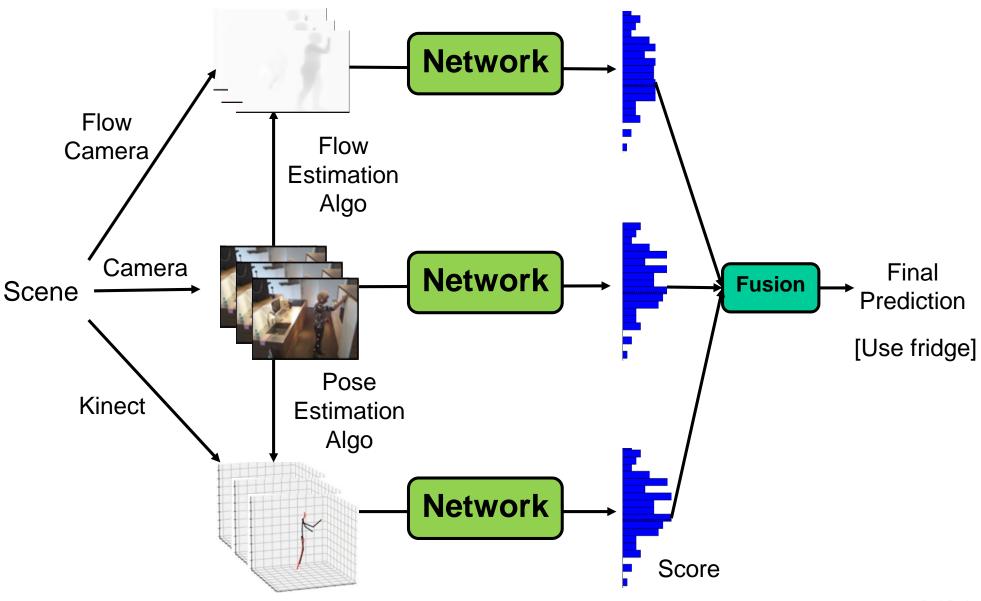
model 'sequences' of perframe CNN representations (**RGB/3D Poses**)

[J. Ng et al., 2015]

• 3-D XYT CNNs

I3D, C3D... 10-99 frames (**RGB + Flow**) [Tran et al., 2015]

Total Pipeline



Travaux Pratiques

Practice

Two-Stream Network

- Generate Flow from RGB
- Evaluate a video using Two-stream Network
- <u>https://colab.research.google.com/drive/1C8g</u>
 <u>PsD_sJlxNj1v4Z5kQDifhkTeTgEmY?usp=shar</u>
 <u>ing</u>

Practice

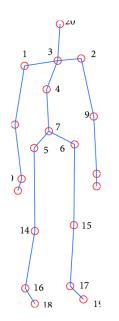
Evaluate a video of UCF-101 using I3D

 <u>https://colab.research.google.com/drive/1M5Hj</u> <u>2tqBL0L2sDDzOPM_U0OzCiotqv29?usp=sha</u> <u>ring</u>

Practice (optional)

Train a 3-layer LSTM, inputs are 3D Poses.

 <u>https://colab.research.google.com/drive/1AUVj</u> pLg8_8E0I-up6CiB-4pwbE_BSfkf?usp=sharing



Reference

- UCF computer vision video Lectures 2012 (Instructor: Mubarak Shah)
- CVPR Tutorial, Human Activity Recognition (M. Ryoo, I. Laptev, J. Mori)

Thanks!

E-mail: rui.dai@inria.fr